- Home
- Robert Greene
Mastery Page 30
Mastery Read online
Page 30
In 1955 Miles Davis—leader of the most famous jazz quartet at the time—decided to take a chance and invite Coltrane into his group. Like everyone else, he knew that the young man was the most technically brilliant player around, the result of so many hours of practice. But he also detected in his work something strange, a new kind of voice straining to come out. He encouraged Coltrane to go his own way and never look back. In the months to come, Davis would have moments of regret—he had let loose something that was hard to integrate into his group. Coltrane had a way of starting chords in the strangest places. He would alternate fast passages with long tones, giving the impression that several voices were coming through the saxophone at once. No one had ever heard such a sound. His tone was equally peculiar; he had his own way of tightly clenching the mouthpiece, making it seem as if it were his own gravelly voice that was emerging from the instrument. His playing had an undercurrent of anxiety and aggression, which gave his music a sense of urgency.
Although many were put off by this strange new sound, some critics began to recognize something exciting in it. One writer described what came out of Coltrane’s saxophone as “sheets of sound,” as if he were playing groups of notes at once and sweeping the listener away with his music. Although he was now gaining recognition and attention, Coltrane continued to feel restless and uncertain. Through all of his years of practicing and playing he had been searching for something he could hardly put into words. He wanted to personalize his sound to the extreme, to make it the perfect embodiment of how he was feeling—often emotions of a spiritual and transcendental nature, and thus hard to verbalize. At moments his playing would come alive, but at other times the sensation of his own voice would elude him. Perhaps all of his knowledge was in fact cramping and inhibiting him. In 1959 he left Miles Davis to form his own quartet. From now on, he would experiment and try almost anything until he found the sound that he had been looking for.
His song “Giant Steps,” on his first major album of the same name, was an exercise in unconventional music. Using peculiar chord progressions that moved in thirds, with constant key and chord changes, the music was impelled frantically forward. (Its third-related chord progressions became known as Coltrane changes, and are still used by musicians as a template for jazz improvisation.) The album was a huge success; several pieces from it went on to become jazz standards, but the experiment left Coltrane cold. He now wanted to return to melody, to something freer and more expressive, and he found himself going back to the music of his early childhood—Negro spirituals. In 1960 he created his first huge popular hit, an extended version of the song “My Favorite Things,” from the smash Broadway musical The Sound of Music. He played it on the soprano saxophone in a style that seemed almost East Indian, blending in as well a touch of Negro spirituals, all with his strange propensity for chord changes and rapid scales. It was a weird blend of experimental and popular music, unlike anything anyone else had done.
Coltrane was now like an alchemist, involved in an almost impossible quest to discover the essence of music itself, to make it express more deeply and directly the emotions he was feeling, to connect it to the unconscious. And slowly, it seemed he was getting closer to his goal. His ballad “Alabama,” written in response to the 1963 bombing by the Ku Klux Klan of a church in Birmingham, Alabama, seemed to capture something essential about the moment and the mood of the time. It seemed to be the incarnation of sadness and despair. A year later, his album A Love Supreme appeared. It was recorded in one day, and making the music was like a religious experience for him. It had everything he was aiming for—extended movements that went as long as it felt natural to do so (something novel in jazz), and a trance-like effect on listeners, while still containing the hard-driving sound and technical brilliance he was known for. It was an album that expressed that spiritual element he could not put into words. It became a sensation, drawing a whole new audience to his music.
People who saw his live performances in this period proclaimed the uniqueness of the experience. As the saxophonist Joe McPhee described it, “I thought I was going to die from the emotion…I thought I was just going to explode right in the place. The energy level kept building up, and I thought, God almighty, I can’t take it.” Audiences would go wild, some people screaming at the intensity of the sound. It seemed as if the music from Coltrane’s saxophone was a direct translation of some deep mood or feeling of his, and that he could move the audience in whatever direction he wanted with it. No other jazz artist had such an effect on audiences.
As part of the Coltrane phenomenon, every change he introduced into jazz was suddenly adopted as the latest trend—extended songs, larger groups, tambourines and bells, Eastern sounds, and so on. The man who had spent ten long years absorbing the styles of all forms of music and jazz now had become the trendsetter for others. Coltrane’s meteoric career, however, was cut short in 1967, when he died at the age of forty of liver cancer.
In Coltrane’s era jazz had become a celebration of individuality. Players like Charlie Parker made the jazz solo the centerpiece of any work. In the solo, the player would pour out his own unique voice. But what is this voice that comes through so clearly in the work of the greats? It is not something we can exactly put into words. Musicians are expressing something deep about their nature, their particular psychological makeup, even their unconscious. It comes out in their style, their unique rhythms and phrasings. But this voice does not emerge from just being oneself and letting loose. A person who would take up an instrument and try to express this quality right away would only produce noise. Jazz or any other musical form is a language, with conventions and vocabulary. And so the extreme paradox is that those who impress the most with their individuality—John Coltrane at the top—are the ones who first completely submerge their character in a long apprenticeship. In Coltrane’s case, this process can be broken up neatly—just over ten years of an intense apprenticeship, followed by ten years of perhaps the most amazing creative explosion in modern music, up until his death.
By spending so long learning structure, developing technique, and absorbing every possible style and way of playing, Coltrane built up a vast vocabulary. Once all of this became hardwired into his nervous system, his mind could focus on higher things. At an increasingly rapid pace, he could bend all of the techniques he had learned into something more personal. In being so open to exploring and trying things out, he could discover in a serendipitous fashion those musical ideas that suited him. With all that he had learned and mastered, he could combine ideas and styles in unique ways. By being patient and following the process, individual expression flowed out of him naturally. He personalized every genre he worked in, from blues to Broadway show tunes. His authentic voice—with its anxious, urgent tone—was a reflection of his uniqueness at birth, and came to him in a lengthy, organic process. By expressing his deepest self and his most primal emotions, he created a visceral effect on listeners.
Understand: the greatest impediment to creativity is your impatience, the almost inevitable desire to hurry up the process, express something, and make a splash. What happens in such a case is that you do not master the basics; you have no real vocabulary at your disposal. What you mistake for being creative and distinctive is more likely an imitation of other people’s style, or personal rantings that do not really express anything. Audiences, however, are hard to fool. They feel the lack of rigor, the imitative quality, the urge to get attention, and they turn their backs, or give the mildest praise that quickly passes. The best route is to follow Coltrane and to love learning for its own sake. Anyone who would spend ten years absorbing the techniques and conventions of their field, trying them out, mastering them, exploring and personalizing them, would inevitably find their authentic voice and give birth to something unique and expressive.
2. The Fact of Great Yield
For as long as he can remember, V. S. Ramachandran (b. 1951) has been fascinated by any kind of strange phenomenon in nature. As narrated in
chapter 1 (see here), at a very young age he began collecting seashells from beaches near his home in Madras. In researching the subject, his attention was drawn to the most peculiar varieties of seashells, such as the carnivorous murex. Soon he added these unusual specimens to his collection. As he got older, he transferred this interest to abnormal phenomena in chemistry, astronomy, and human anatomy. Perhaps he intuited that these anomalies fulfilled some kind of purpose in nature, that what does not fit the pattern has something interesting to tell us. Perhaps he felt that he himself—with his passion for science when other boys were attracted to sports or games—was a bit of an anomaly as well. In any event, as he matured his attraction to the bizarre and abnormal only grew.
In the 1980s, as a professor of visual psychology at the University of California at San Diego, he came upon a phenomenon that appealed to his interest in anomalies in the deepest way—the so-called phantom limb syndrome. In this case, people who have had a limb amputated continue to experience sensation and pain where the limb used to be. In his research as a visual psychologist, Ramachandran had specialized in optical illusions—instances in which the brain would incorrectly fill in information from what the eyes had processed. Phantom limbs represented an optical illusion on a much larger scale, with the brain supplying sensation where there could be none. Why would the brain send such signals? What does such a phenomenon tell us about the brain in general? And why were there so few people interested in this truly bizarre condition? He became obsessed with these questions, and read everything he could about the subject.
One day in 1991, he read about an experiment conducted by Dr. Timothy Pons of the National Institute of Health that astounded him with its possible ramifications. Pons’s experiment was based on research from the 1950s in which the Canadian neurosurgeon, Wilder Penfeld, had been able to map the areas of the human brain that regulate sensation in various body parts. This map ended up being applicable to primates as well.
In Pons’s experiment, he worked with monkeys whose nerve fibers from the brain to one arm had been severed. In testing out the map of their brains, Pons discovered that when he touched the hand of the dead arm, there was no activity in the corresponding part of the brain, as expected. But when he touched their faces, suddenly the cells in the brain that corresponded to the dead hand began to fire rapidly, in addition to those of the face. The nerve cells in the brain that govern sensation in the hand had somehow migrated to the area of the face. It was impossible to know for sure, but it seemed that these monkeys were experiencing sensation in the dead hand when their faces were touched.
Inspired by this discovery, Ramachandran decided to conduct an experiment that was astonishing for its simplicity. He brought into his office a young man who, because of a recent car accident, had had his left arm amputated from just above the elbow, and was now experiencing considerable sensation in his phantom limb. Using a cotton swab, Ramachandran proceeded to touch the man’s legs and stomach. He reported completely normal sensations. But when Ramachandran swabbed a particular part of his cheek, the man experienced a sensation both in the cheek and in the thumb of his phantom hand. Moving around the face with the Q-tip, Ramachandran found other areas corresponding to other parts of the missing hand. The results were remarkably similar to those of Pons’s experiment.
The implications of this one simple test were profound. It had been largely assumed in neuroscience that the connections in the brain are hardwired at birth or in the earliest years, and are essentially permanent. The results of this experiment contradicted this assumption. In this case, after a traumatic accident, it appeared that the brain had altered itself in a dramatic fashion, creating whole new networks of connections in a relatively short amount of time. This meant that the human brain is potentially far more plastic than had been imagined. In this case the brain had altered itself in an odd and seemingly inexplicable way. But what if this power to alter itself could be harnessed for positive, therapeutic uses?
Based on this experiment, Ramachandran decided to shift fields, moving into the neuroscience department at UCSD and devoting his time and research to anomalous neurological disorders. He decided to take his phantom limb experiment a step further. Many patients with a severed limb experience an odd kind of paralysis that is highly painful. They feel the phantom limb, they want to move it but cannot, and they feel a cramping and sometimes an excruciating ache. Ramachandran speculated that before the limb had been amputated the brain had learned to experience the arm or leg as paralyzed, and once it had been amputated it continued to feel it that way. Would it be possible, considering the plasticity of the brain, to unlearn this paralysis? And so he came up with yet another incredibly simple experiment to test out his idea.
Using a mirror that he had in his office, he proceeded to construct his own apparatus. He took a cardboard box with the lid removed, and made two armholes in the front of the box. He then positioned the upright mirror inside of it. Patients were instructed to place their good arm through one hole and their severed arm right up to the other hole. They were to maneuver the mirror until the image of their good arm was seen in the position where their other arm should be. In moving their good arm and seeing it move in the position of the severed one, almost instantly, these patients experienced an alleviation of the feeling of paralysis. Most of the patients who took the box home with them and practiced with it were able to unlearn the paralysis, much to their relief.
Once again, the meaning of this discovery was profound. Not only was the brain more plastic, but the senses were also much more interconnected than previously imagined. The brain did not consist of modules for each sense; instead they overlapped. In this case, pure visual stimuli had altered the sense of touch and sensation. But beyond that, this experiment also called into question the whole notion of pain. Pain, it seemed, was a kind of opinion the body rendered on what it was experiencing, on its own health. This opinion could be tricked or manipulated, as the mirror experiment had shown.
In further experiments, Ramachandran arranged it so that patients would see a student’s arm instead of their own, superimposed over the phantom limb. They would not be aware that this had been done, and when the student moved the arm, they experienced the same relief from paralysis. It was merely the sight of the movement that created the effect. This made the sensation of pain seem increasingly more subjective and subject to alteration.
Over the ensuing years, Ramachandran would perfect this creative style of investigation into an art, transforming himself into one of the leading neuroscientists in the world. He developed certain guidelines for his strategy. He would look for any evidence of anomalies in neuroscience or in related fields, ones that brought up questions that had the potential to challenge conventional wisdom. His criteria were that he had to be able to show it was a real phenomenon (something like telepathy would not fall into this category), that it could be explained in terms of current science, and that it had important implications stretching beyond the confines of his own field. If others were ignoring it because it seemed too weird, so much the better—he would have the research field all to himself.
Furthermore, he looked for ideas that he could verify through simple experiments—no heavy or expensive equipment. He had noticed that those who got large grants for their research, which would include all of the technological gadgetry that went with it, would become embroiled in political games in order to justify the money being spent on them. They would rely on technology instead of on their own thinking. And they would become conservative, not wanting to rock the boat with their conclusions. He preferred to do his work with cotton swabs and mirrors, and by engaging in detailed conversations with his patients.
For instance, he became intrigued by the neurological disorder known as apotemnophilia—the desire of perfectly healthy people to have a limb amputated, with many of them actually going through with the surgery. Some had speculated that this well-known disorder is a cry for attention, or stems from a form of sexual perversion
, or that patients had seen in childhood an amputee and the image had somehow become imprinted as an ideal to them. In all of these speculations, people seemed to doubt the reality of the actual sensation—it was all in their heads, they implied.
Through simple interviews with several such patients, Ramachandran made some discoveries that dispelled these notions. In all cases they involved the left leg, which was curious enough. In talking to them, it seemed clear to Ramachandran that they were not after attention, nor were they sexually perverse, but rather they were experiencing a very real desire, because of some very real sensation. With a pen, they all marked the exact spot where they wanted the amputation.
When he did simple galvanic skin response tests on their bodies (tests that record the registering of slight amounts of pain), he discovered that everything was normal, except when he pricked the part of the leg the patient wanted amputated. The response was through the roof. The patient was experiencing that part of the limb as if it were too present, too intense, and this overactive sensation could only be done away with through amputation.
In subsequent work he was able to locate neurological damage to the part of their brains that create and control our sense of body image. This damage had occurred at birth, or very early on. This meant that the brain could create a body image in a perfectly healthy person that was highly irrational. It seemed as well that our sense of self is far more subjective and fluid than we had thought. If our experience of our own body is something constructed in the brain and can go haywire, then perhaps our sense of self is also something of a construction or illusion, one that we create to suit our purposes, and one that can malfunction. The implications here go beyond neuroscience, and into the realm of philosophy.